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1    Introduction 

The Cauchy stress tensor T can be decomposed into a spherical part,1 

—pi, and a deviatoric part, T*: 

T = -pi+r,    ti = -p+t?. (l.i) 

The pressure p is given by 

p = -|trT = -|(*1+t2 + *3), (1.2) 

and the deviatoric stress tensor T* is given by 

T* = T - |(tr T)I,        tt = tt - |(*i +12 +13), (1.3) 

so that 
trT* = t{ + t2* + t3* = 0. (1.4) 

The principal stresses £,• and principal deviatoric stresses t* are the princi- 
pal values of T and T*, respectively. For an isotropic elastic material the 
linear theory predicts that the pressure depends only on the volumetric 
strain, whereas T*, which is a tensorial measure of shear stress, depends 
only on the shear strain. 

The object of this report is to study those aspects of the nonlinear 
elastic response of polycrystalline metals and ceramics which may be im- 
portant in high velocity impacts, where large elastic increases in density 
are encountered. As is well-known, a nonlinear pressure/density relation 
is generally required for such applications. Here we focus on other nonlin- 
ear effects that are often ignored or treated incorrectly. In particular, we 
study the coupling of the pressure and deviatoric stress which results from 
the dependence of shear stress on volumetric strain and the dependence of 
pressure on shear strain. 

We begin with a brief review of relevant results from the theory of hy- 
perelastic materials.2 Let F denote the deformation gradient relative to 
some fixed reference configuration. An elastic (or Cauchy-elastic) material 
is one for which T is a function of F only. A hyperelastic (or Green-elastic) 
material is an elastic material for which the first Piola-Kirchhoff stress ten- 
sor (detF)T(F"1)r is the gradient of some real-valued function e of F, in 

1 Second-order tensors are denoted by boldface uppercase Roman letters. The identity 
tensor is denoted by I, and tr denotes the trace function. The deviatoric part and the 
transpose of any tensor A are denoted by A* and AT, respectively. The norm of A is 
||A|| = tr(ATA). 

2A standard reference is Truesdell and Noll [1]. 



which case s is called the strain energy or the stored energy per unit refer- 
ence volume.3 We consider only hyperelastic materials here. For simplicity 
we also assume the material is isotropic. These conditions, together with 
the requirement that constitutive equations be properly invariant under 
changes of the frame of reference, yield various reduced forms (see below) 
for the strain energy and the Cauchy stress tensor. 

The left stretch tensor V is the unique symmetric positive-definite ten- 
sor occurring in the left polar decomposition of the deformation gradient: 

F = VR,       V2 = B = FFT, (1.5) 

where R, the rotation tensor, is proper orthogonal, and B, the left Cauchy- 
Green tensor, is symmetric positive-definite. The tensors V and B share 
a common set of principal axes, called the principal axes of strain in the 
deformed state or the Eulerian strain axes. The principal stretches A; 
(i = 1,2,3) are the principal values of V, and the principal strains are 
A,- — 1. The principal values of B are 6,- = A?. Let J denote the Jacobian 
of the deformation, and let p denote the ratio of the densities p and p0 in 
the deformed and reference configurations, respectively: 

J = detF = detV = A1A2A3,        p = p/po = l/J. (1.6) 

Relative to an undistorted reference configuration of an isotropic hypere- 
lastic material, s and T may be expressed as isotropic functions of V or 
B; and the Eulerian strain axes are principal axes for T. e may also be 
expressed as a symmetric function of Al5 A2, A3 or bu b2, h3. Then4 

Note that the summation convention is not used here or elsewhere. 
3This restriction on the constitutive equation is motivated by the restrictions imposed 

on thermoelastic materials by the second law of thermodynamics. A thermoelastic ma- 
terial reduces to a hyperelastic material for isentropic deformations, provided we take 
£ to be the internal energy per unit reference volume. The same thermoelastic mate- 
rial reduces to a (generally different) hyperelastic material for isothermal deformations, 
provided take e to be the free energy per unit reference volume. 

4If £ is a scalar-valued function of a symmetric tensor A, then the gradient of £ at A 
is the symmetric tensor de/dA with the property tr [(de/dA)S] = d/dt e(A + tS)\t=o, 
where S is any tensor such that A + tS lies in the domain of e for sufficiently small t. 
Furthermore, £ is an isotropic function of the symmetric tensor A iff £ is a symmetric 
function of the principal values a,- of A, in which case de/dA is coaxial with A and has 
corresponding principal values de/dai. 



2    The Logarithmic Strain Tensor 

The principal logarithmic strains /,• are the logarithms of the principal 
stretches, and the (Eulerian) logarithmic strain tensor L is the tensor 
coaxial with V and B but with corresponding principal values equal to 
the principal logarithmic strains: 

/t = lnA, = iln6,-,       L = lnV = |lnB. (2.1) 

Then the strain energy function e of an an isotropic hyperelastic material 
can be expressed as an isotropic function of L or, equivalently, as a sym- 
metric function of the principal logarithmic strains. From (1.7)3 and (2.1)j 
it follows that 

~ de „,        de , 

*<-'«:•    T = "9L- (2-2) 

The logarithmic strain tensor has several interesting properties.   By 
(2.1) and (1.6) we have 

trL = lx + l2 + l3 = ln(X1\2X3) = In J = -Inp. (2.3) 

Hence tr L is a measure of the volumetric strain. The deviatoric part L* 
of L has principal values 

A,- \   1 
=   In 

Ji/3/     3 
(2.4) 

where i,j, k always denotes a permutation of 1,2,3. Now consider another 
deformation which differs from the given one by a superimposed dilatation 
and rotation, so that this second deformation has left stretch tensor aV 
and principal stretches aX1,aX2,aX3 for some a > 0. Then L* is the same 
for both deformations, since the factor a cancels out in (2.4). Hence the 
deviatoric logarithmic strain tensor L* is independent of the dilatational 
part of the deformation gradient, i.e., it is independent of the volumetric 
stretch or strain as measured by (1.6) or (2.3). Therefore L* is a tensorial 
measure of shear strain only. 

From the results above it follows that e, T, T*, and p may be regarded 
as functions of the independent variables L* and J (or p), with each func- 
tion isotropic in L* for fixed J (or />). Then it can be shown that (2.2)2 is 



equivalent to the conditions5 

?=-SlMd JT*=(!?!•     (2-5) 
where the subscript denotes the variable held constant during differentia- 
tion. Equivalently, 

'"•(SI. - T""(ft- w) 
In terms of the pressure response functions 

p = p(J,V) = P(pX), (2.7) 
equations (2.5)! and (2.6)a may be integrated to yield 

e = £ p(t, V) df + e(L*) = jT jitf, L*)£~2 if + e(V)        (2.8) 

for some isotropic function e of L* only. From (2.8) we see that the pressure 
response function of an isotropic hyperelastic material determines the strain 
energy function to within an arbitrary function of L* only. Also note that 
for an isotropic elastic material, the existence of a strain energy function 
places no restrictions on the pressure response function. That is, given any 
isotropic function p of J and L*, there exist infinitely many strain energy 
functions e, namely those given by (2.8)1? for which the corresponding 
pressure response function is p = p(J,L*); then the response function for 
the deviatoric stress tensor is determined from (2.5)2. 

In practice we are usually faced with a different situation—namely, we 
have a limited amount of experimental data on the material response, and 
these data impose restrictions on the response functions for both the pres- 
sure and the deviatoric stress. We then need to determine any additional 
restrictions imposed on these response functions due to the existence of a 
strain energy function. We address this problem in the next section for 
small shear strains. The following result, which requires no restrictions on 
the magnitude of the shear strain, is an immediate consequence of (2.5) or 
(2-6).  

5To prove (2.5)i, for example, note that since /* is independent of J, (2.4) yields 
dli/dJ = 1/(3J). Then 

dJ ~ ^ dk dJ ~ ZJfri dk ' 

But from (1.2), (2.2), and p = 1/J, we see that the expression on the right above is 
equal to —p. 



For an Isotropie hyperelastic material, the following three conditions are 
equivalent: 

(i) The strain energy decouples additively into a function of density 
only and a function of shear strain only, i.e., e = e(p) + e(L*); 

(ii) The pressure depends only on the density, i.e., p = p(p); 
(iii) JT* is independent of the density. 

If these conditions hold, then p{p) = p2de/dp and T* = pdi/dL*. In 
particular, either (i) or (ii) implies T* is proportional to the density ratio 
p. In Section §4 we show that these properties axe generally inconsistent 
with experimental data. 

In the remainder of this section we consider some relations involving 
the invariants of L*. These results are utilized in the next section. Let 7* 
and S* denote the second and third moments of L*: 

r   =   tr[(L*)2] = ||L*|P = (Z1*)2 + (/;)2 + (/3*)2 

=   -2( W + W + I3K) = W*)2 + W* + (//)»] (2.9) 

=   Wi ~ V)2 + (V ~ <3*)2 + ('3* - K)2}, 

and 
ST   =   tr[(L*)3] = (V)3 + (//)3 + (Z3-)3 

=   3detL* = 3/;/;/3* = -£(CK* 
(2.10) 

where we have used the fact that 

trL* = /1* + /2* + /3* = 0. (2.11) 

Both 7* and 6* axe isotropic scalar measures of shear strain which axe inde- 
pendent of the dilatational part of the deformation. Alternate expressions 
for 7* follow from (2.9)6 and the identities 

/; - I* = /,- - /,- = In (^j . (2.12) 

Note that 7* > 0 and that y/^f = ||L*|| is the norm of L*, which may 
be interpreted as the equivalent shear strain; it is zero iff the deformation 
gradient is a dilatation superimposed on a rotation: 

7* = 0ü ||L*|| = 0^>L* = O^V = J!/3I <& F = JVSR.   (2.13) 

5 



Of course, 7* = 0 =3» S* = 0, but the converse does not hold.6 

Let L** denote the deviatoric part of the square of the deviatoric part 
ofL: 

L*' = [(L*)T = (L*)2-§7*I. (2.14) 

Then the principal values l** of L** are given by 

ir = a*)2 - h* = |[tt-)2+2//V] = UK + IT ■     (2.i5) 

From (2.3), (2.4)1? (2.9)-(2.11), and (2.15), we find that7 

dp #7* dS* £ = -'< it'2*, äf-«r. (2.16) 
As observed previously, any function of L can be regarded as a function 

of p and L*. Therefore any scalar-valued isotropic function of L can be 
expressed as a function of p and the second and third moments of L*. In 
particular, this applies to the strain energy e and the pressure p: 

e = e(Ä7*,0.       P = P(/5,7*,0 = /52(fr)    ^ (2.17) 

where (2.6)! has been used. Then from (1.1), (2.2)l5 (2.17)3, and (2.16), 
we obtain the following formula for the principal deviatoric stresses in an 
isotropic hyperelastic material: 

trM£Vr+H£)j-     (ii8) 

equivalently, 

T*=nli.L*+3#l.L"-     (2-i9) 

Note that the coefficients of L* and L** in (2.19) generally depend on all 
three of the variables p, 7*, and 6*. 

6If the principal stretches are ordered so that Ai < A2 < A3, then 

S* = 0 <& h' = 0 & h* = -/3* & h = |(/i + /3) oA2 = y/hM. 

In particular, S   = 0 for a simple shear (where Aj = I/A3 and A2 = 1) and also for a 
simple shear with superimposed dilatation (where Ai = J2l3/\z and A2 = J1^3). 

7In deriving (2.16)2,3 it is useful to first establish the following results: dl*/dU = §, 
.1   AI** IM. — 2;.*    ^A AI** mi. — 2;.* 
3' dir/dlj = -1, dir/dli = \H, and dir/dlj = W 

6 



3    Approximate Formulas 

In this section we derive approximate formulas for the strain energy, pres- 
sure, and deviatoric stress that are valid for arbitrarily large changes in 
density and sufficiently small shear strains. From (2.17)a, (2.9), and (2.10), 
it follows that 

e   =   e(p) + e2(p)r + Oß(\\LT) 
=   e(~p) + e2(p)r + e3(p)S* + öß(\\V\n (3.1) 

for some functions e, e2, and e3 of p only. Here C^dlL*!!") denotes a 
function of p and L* which is of order n in L*; i.e., there is a function 
M(p) such that C^(||L*||") < M(/5)||L*||" for L* sufficiently close to 0. 
Similarly, from (2.17)2 we have 

P  =  P(p) + Oß(\\Vf) 

= P(p) + P2(p)T + Oß(\\V\\*) 

=  P(P) + P»{p) r + PS(P) 6* + 0-P (||L* ||*) (3.2) 

for some functions p, p2, and p3 of p only. Since 7* and S* are independent 
of p, (2.17)3 and (3.1) imply 

We call p =■ p(p) the hydrostatic pressure at the density ratio p. It is 
the pressure the material would experience if the shear strain were zero; 
i.e., if the conditions in (2.13) hold, in which case (1.1) and (2.19) require 
that T = —pi = —p(p)I. In accordance with experimental data for most 
materials, we assume dp/dp > 0. Then the bulk modulus K is positive: 

0<Km4p=4r~J^' (3-4) 

and p may be regarded as a function of the hydrostatic pressure p. Hence 
any function of p, such as n and the functions p, and u> below, may also be 
regarded as a function of p. 

From (2.18) and (3.1), the principal deviatoric stresses satisfy 

*; = 2fi(p)i* + oß(\\V\\*) 
=   2fi(p)l* + 3u;(p)ir + Oß(\\V\\*), (3.5) 



where fi(p), the shear modulus at density ratio p, is given by 

and 

tiP) = Pe2(p) = P 

^{p)z=p£z{p)= P 

ßr. 

<de_ 
,88* 

ftf 

'prt" 

7*=«*=0 

7«=«*=0 

(3.6) 

(3.7) 

The relations (3.5) are equivalent to 

T*   =   2p{p)V + öß{\\Vf) 

=   2p{p)V + Zu{p)V* + öß{\\V\\*). (3.8) 

From the constitutive relations (3.2) and (3.5) or (3.8), we see that in 
addition to the dependence of pressure on volumetric strain and the depen- 
dence of deviatoric stress on shear strain, the pressure will also generally 
depend on the shear strain, and the deviatoric stress will also generally 
depend on the volumetric strain. Furthermore, these latter dependencies 
are coupled. Indeed, from (3.3)2,3, (3.6)x, and (3.7)x, it follows that the co- 
efficients p2(p) and p3(p) in the expansion (3.2) for the pressure are related 
to n and u> by 

ft(/5) = P' dp 

' p\      _dp (dp,     //' 

JJ        dp \dp     Ky 

t-\     ~2 d fu\      -^ W = K 

(3.9) 

(3.10) 
du     u\ 

,dj>      K) ' 

This coupling of the pressure and deviatoric stress may be made more 
explicit as follows. First, note that from (2.9) and either (3.8) or (3.5), we 
have 

l|T*||2 = (*x*)2 + (i2*)2 + (<3*)2 = [2tiP)?r + Oß(\\V ||3). (3.11) 

Then on solving (3.11) for 7* and substituting into (3.2)2, we obtain the 
following relation between the pressure p, the hydrostatic pressure p = p(p), 
the shear modulus ^i, and the equivalent shear stress ||T*||: 

dp 

dp p = P(p) + ^[p£-p)\\T*\\2 + oß(\\r\\*) 
1 

= f + SJTlifS-1 llrH2 + ^llT*ll3)' (3.12) 

8 



where in (3.12)x the coefficient of ||T*||2 is regarded as a function of p, and 
in (3.12)2 it is regarded as a function of p. 

These results may also be expressed in terms of the deviatoric parts 
E , G , and H   of the (Eulerian) finite strain tensors 

E = V-I,    G = I(B-I),    H^KI-B"1); (3.13) 
i 

in particular, H is known as the Almansi-Hamel strain tensor. Some care 
must be taken here since, unlike L*, the tensors E* = V*, G* = |B*, and 
H* = —|(B-1)* are not independent of the volumetric strain. Analogous 
to the definition (2.14) of L**, for any tensor A let A** = [(A*)2]* = 
(A*)2 - |tr [(A*)2]I. Then it can be shown that 

L*   «   /5V3E* _ IpWE** 

»   ^3G* - p*/*G" « p-V3H* + p-Vm** , (3.14) 

IT « />2/3E" « /54/3G" „ p-4/3H**, (3.15) 

7* « /J2/3||E*||2 « P4/3||G*||2 » j5-4/3l|H*||2, (3.16) 

where the error in each of these approximations is of order ||L* ||3. Substitu- 
tion of (3.14)-(3.16) into (3.1)l5 (3.2)2, and (3.8)2 yields alternate formulas 
for e, p, and T* to within an error of order ||L*||3. Also note that if the 
E**, G**, and H** terms are omitted in (3.14), then the error in (3.14) is 
of order ||L*||2, and (3.8)x and (3.2)x yield 

T*   «   2(i(p)V « 2pl'3p(p)E* 

»   2pH*p,{p)G* » 2p-ysfi(p)H* (3.17) 

and p « p(p), all to within an error of order ||L*||2. Thus when terms 
of second order in the shear strain are neglected, the pressure depends 
only on the density, whereas the deviatoric stress depends on both the 
shear strain and the density through the density dependence of the shear 
modulus.8 As we see in the next section, for many materials the shear 
modulus changes substantially over the range of densities encounterd in 
high velocity impacts. 

8The reader who prefers to work with the strain tensor G, for example, may be 
tempted to use the term "shear modulus" for the coefficient p2t3n(p) of 2G* in (3.17). 
However, as we see in the next section, this would be in conflict with the terminology 
used in much of the wave propagation literature. 



4    Material Properties 

Let Ui and 11$ denote the longitudinal and shear wave speeds in an isotropic 
hyperelastic material in a state of dilatational strain (cf. (2.13)) under 
hydrostatic stress T = — p(p)I. These wave speeds are related by the well- 
known formula (cf. [1, eq. (75.4)]) 

dp 

dp 

where 

^2 = f^2 + f = IUS
2 + U£, (4.1) 

dp 

W* (4'2) 
is referred to as the bulk wave speed. Then from (3.4) we have 

K = PUl (4.3) 

Similarly, it is customary to define the shear modulus p (regarded as a 
function of p, p, or p) by 

P = PU>. (4.4) 

Then ~p = pU^ — pdp/dp, and by use of the well-known formula for the 
longitudinal wave speed (cf. [1, eq. (74.7)]), 

^' = |, (4.5) 

it can be verified that the shear modulus as defined here agrees with the 
definition used in the previous section. The shear and bulk moduli as 
a function of density or hydrostatic pressure are usually obtained from 
measurements of ultrasonic longitudinal and shear wave speeds, together 
with the above relations. From (4.4), (3.9), and (3.4), we see that the 
coefficient p2 of 7* in the expansion (3.2) for p is also given by 

dUs 
p2 = 2pnUs—. (4.6) 

Then from (3.9) and (4.6) it follows that 

du, dp     p        dUo 
P2>0 <£> p-jz> p & -jz>- & -7#>0. (4.7) 

dp dp      K dp 

In particular, dUs/dp > 0 implies dp/dp > 0. Also, since 7* > 0 for any 
nonzero shear strain, from (4.7) and (3.2)2 we see that if dUs/dp > 0, then 

10 



shear strain at constant density results in an increase in pressure, whereas 
shear strain at zero pressure results in bulking (since p(p) < 0 in this case), 
provided that terms of order three in the shear strain can be neglected. For 
most isotropic elastic materials, the shear wave speed does in fact increase 
with pressure.9 

The elastic moduli and their pressure derivatives evaluated at p = 0 
(equivalently, p = 1) are denoted with a zero subscript. Values for a few 
materials are listed in Table l.10 

Table 1: Elastic Moduli and Their Pressure Derivatives (K0 and p,0 in GPa, 
(dfj,/dp)0/fi0 in GPa-1, other quantities dimensionless). 

Material KQ Ho 
dn 

dp 0 

dp 

dp 0 

1   dp 

Ho dp 0 

dp 

dp 
_f*o 

o     Ko 
Al 76.0 26.1 4.4 1.8 0.069 1.5 
Cu 137 47.7 5.5 1.4 0.028 1.0 
U 113 84.4 5.9 3.0 0.036 2.3 
W 310 160 3.9 2.3 0.014 1.8 

TiB2 237 246 2.0 9.0 0.036 7.9 
ZnO 139 44.2 4.8 -0.69 -0.016 -1.0 

fused silica 36.7 31.3 -6.3 -3.2 -0.10 -4.0 

p + 0(f).     (4.8) 

Table 1 shows that poly crystalline zinc oxide and fused silica are anoma- 
lous in that their shear modulus decreases with increasing pressure. For 
these materials the inequalities in (4.7) are reversed, in which case (3.2) 
implies shear induced compaction (for sufficiently small shear strains) at 
zero pressure. This is indeed a well-known phenomenon in fused silica. 
Observe that 

H = »o+%   P+0{?)    and    !LZ*L = Li 
dp 0 p0 fi0 dp 

Thus (dp/dp)0/p0 is a measure of the relative change in the shear modulus 
due to hydrostatic pressure. 

9This statement requires some qualification in the adiabatic case, since the shear 
modulus and the shear wave speed should increase with pressure to some peak values 
and then decay to zero as the material melts. Also note that (4.7) remains valid if all 
inequalities are replaced by equality, in which case u = p0p; thus for the typical case 
where dUs/dp ^ 0, the shear modulus (and hence T ) cannot be proportional p. 

10The data for Al, Cu, U, and W are taken from [2], TiB2 from [3], ZnO from [4], 
and fused silica from [5]. 
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Expansion of the hydrostatic pressure p in powers of p yields 

-l)(p- l)2 + 0((p - If). P(~P) = «°(~P-1) + T{^ (4.9) 

Now consider the case where ||L*|| = ö(p — 1); i.e., where the shear strain 
and the volumetric strain are of the same order. Then 

r = a(p-iy + 0((p-m (4.10) 

for some constant a > 0 which depends on the particular deformation in 
question; and from (3.2), (3.9), and (4.9), we have 

P-P + o((p-iy) 

-^)(p-l) + 0((p 
Ko/ 

I)2), (4.11) 

and 

P_ 
KQ 

1 fdn 
2 \~dp 

-l)+a (P ~ I)2 

(4.12) 

05-1) + 

+ 0{{p-lY). 

Equation (4.11) gives an estimate for the relative increase in the pressure 
due to shear strain. Equation (4.12) is useful for comparing the second- 
order contributions to the total pressure: the first group of terms inside 
the square brackets is the contribution due volumetric strain; the second 
group is the contribution due to shear strain. 

These results apply in particular to uniaxial strain where A2 = A3 = 1, 
in which case 7* = IQnp)2 » f(/5-l)2, and hence a = 2/3 in (4.10)-(4.12). 
We will apply the above results to uniaxial strain of the polycrystalline ti- 
tanium diboride tested in [3]. From the data in Table 1 we find that the 
contributions of volumetric strain and shear strain to the second-order term 
in the expansion (4.12) for the total pressure are 0.5 and 5.27, respectively; 
i.e., the second-order shear strain contribution to the total pressure is an 
order of magnitude greater than the second-order volumetric strain con- 
tribution. And from (4.11) we have (p — p)/p « 5.27 (p — 1). Of course, 
these results are valid only within the elastic range of this material. At 
the Hugoniot elastic limit (HEL), p — 1 is approximately equal to 0.03 (cf. 
[6]), so that (p — p)/p w 0.16. In other words, at the HEL the relative 
increase in pressure due to shear strain is about 16%. If not taken into 
account, this increase would lead to an overestimation of the shear stress 
at the HEL (obtained by subtracting p from the longitudinal stress). 
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